

ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14025 / ISO 21930

KK Lifting System
Peikko Slovakia s.r.o.

EPD HUB, HUB-1012

Publishing ON 05.01.2024, last updated ON 05.01.2024, valid until 05.01.2029.

GENERAL INFORMATION

MANUFACTURER

Manufacturer	Peikko Slovakia s.r.o.
Address	Kráľová nad Váhom 660, 925 91 Kráľová nad Váhom, Slovakia
Contact details	jaakko.yrjola@peikko.com
Website	www.peikko.com

EPD STANDARDS, SCOPE AND VERIFICATION

· · · · · · · · · · · · · · · · · · ·	
Program operator	EPD Hub, hub@epdhub.com
Reference standard	EN 15804+A2:2019 and ISO 14025
PCR	EPD Hub Core PCR version 1.0, 1 Feb 2022
Sector	Construction product
Category of EPD	Sister EPD - HUB-0004
Scope of the EPD	Cradle to gate with options, A4-A5, and modules C1-C4, D
EPD author	Patience Wanjala, Peikko Group Oy.
EPD verification	Independent verification of this EPD and data, according to ISO 14025:
EPD verifier	Elma Avdyli, as an authorized verifier acting for EPD Hub Limited

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of construction products may not be comparable if they do not comply with EN 15804 and if they are not compared in a building context.

PRODUCT

Product name	KK Lifting System
Place of production	Kráľová nad Váhom 660, 925 91 Kráľová nad Váhom, Slovakia
Period for data	2022
Averaging in EPD	No averaging
Variation in GWP-fossil for A1-A3	0 %

ENVIRONMENTAL DATA SUMMARY

Declared unit	1 Kg of KK Lifting System
Declared unit mass	1 kg
GWP-fossil, A1-A3 (kgCO2e)	1,6E0
GWP-total, A1-A3 (kgCO2e)	1,6E0
Secondary material, inputs (%)	80.1
Secondary material, outputs (%)	94.3
Total energy use, A1-A3 (kWh)	6.0
Total water use, A1-A3 (m3e)	2,32E-2

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

Peikko Group Corporation is a leading global supplier of slim floor structures, wind energy applications, and connection technology for precast and cast-in-situ construction. Peikkos innovative solutions offer a faster, safer, and more sustainable way to design and build.

PRODUCT DESCRIPTION

This EPD represents KK Lifting System produced at Peikko facility in Slovakia.

Robust Lifting System with rapid coupling and release functionality. The KK Lifting System offers safe and economical solutions for many construction tasks. KK Lifting Inserts are installed recessed into the precast concrete element. Reusable Lifting Keys are attached to the inserts and enable a safe connection to the crane.

The inserts of the KK Lifting System are either made of black steel, galvanized steel or stainless steel.

Individual KK anchors can bear loads up to 320 kN.

KK Lifting System is designed and manufactured in accordance with EU Machinery Directive 2006/42/EC and VDI/BV-BS 6205. Conformity is certified by CE marking. More product information including technical specifications are found from Peikkos webpage https://www.peikko.com/products/product/kk-lifting-system/technical-information/

Further information can be found at www.peikko.com.

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass- %	Material origin
Metals	100	EU
Minerals	-	-
Fossil materials	-	-
Bio-based materials	-	-

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	0.0
Biogenic carbon content in packaging, kg C	0.0019

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 Kg of KK Lifting System
Mass per declared unit	1 kg
Functional unit	
Reference service life	

SUBSTANCES, REACH - VERY HIGH CONCERN

The product does not contain any REACH SVHC substances in amounts greater than 0.1% (1000 ppm).

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

Pro	oduct st	age		embly age			U	lse sta	ge			E	nd of I	life sta	ge	S	Beyond the system boundari es							
A1	A2	A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	СЗ	C4		D							
X	x	x	x	x	MN D	MN D	MN D	MN D	MN D	MN D	MN D	x	x	X	x	X		x		x		x		
Raw mat erial s	Tran spor t	Man ufac turin g	Tra nsp ort	Ass em bly	Use	Mai nte nan ce	Rep	Rep lace me nt	Ref urbi shm ent	Ope rati ona I ene rgy use	Ope rati ona I wat er use	Dec ons tr./ de mol	Tra nsp ort	Wa ste pro cess ing	Dis pos al	R e u s e	R e c o v e r	R e c y cl in g						

Modules not declared = MND. Modules not relevant = MNR.

MANUFACTURING AND PACKAGING (A1-A3)

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, fuels used by machines, and handling of waste formed in the production processes at the manufacturing facilities are included in this stage. The study also considers the material losses occurring during the manufacturing processes as well as losses during electricity transmission.

Α1

The environmental impacts of raw material supply (A1) include emissions generated when raw materials are taken from nature, transported to industrial units for processing and processed, along with waste handling from the various production processes. The primary raw materials in the product are steel and include steel plate, rebars and welding filler metal.

Total recycling content of steel plates is over 80% and rebars have 97% recycled content while welding filler is 100% virgin. All major upstream processes are taken into consideration, including infrastructure. Loss of raw material and energy transmission losses are also taken into account.

A2

The considered transportation impacts (A2) include exhaust emissions resulting from the transport of all raw materials from suppliers to Kralova, Peikko production plant in Slovakia as well as the environmental impacts of production of the used diesel. The manufacturing, maintenance, and disposal of the vehicles as well as tire and road wear during transportation have also been included. The transportation distances and methods were provided mainly by Peikko Slovakia.

Α3

The environmental impacts considered for the production stage (A3) cover the manufacturing of the production materials (e.g. welding gases and lubricants) and energy required by the production. Also handling of waste formed in the production processes at the production plant is covered. The environmental impacts of this stage have been calculated using the most recent data regarding what is applied in the factory. The study considers the losses of main raw materials occurring during the manufacturing process, but in case of KK Lifting System, all leftover raw material is considered as co-product.

TRANSPORT AND INSTALLATION (A4-A5)

Transportation impacts occurred from final products delivery to construction site (A4) cover fuel direct exhaust emissions, environmental impacts of fuel production, as well as related infrastructure emissions.

A4

KK Lifting System transportation is taking place from Kráľová nad Váhom,

Slovakia factory to mostly central european countries. An average distance of 1000 km is assumed, and the transportation method is assumed to be a lorry with fill rate assumed as 100%. Transportation does not cause losses as products are packaged properly.

A5

Only packaging waste is generated, and the impacts are accounted in module A5, since the product is delivered as whole to the construction site. There is no installation-related process happening in A5.

The distance is assumed as 50km and the transportation method assumed to be lorry. This is an average distance which considers the fact that the distance from the customer to recycling and landfill facilities is not very long, as customers are assumed to be located in capital regions of their respective countries.

PRODUCT USE AND MAINTENANCE (B1-B7)

This EPD does not cover the use phase.

Air, soil, and water impacts during the use phase have not been studied.

PRODUCT END OF LIFE (C1-c4, D)

End of life stage includes deconstruction/demolition (C1), transport to waste processing (C2), waste processing for reuse, recovery and/or recycling (C3) and disposal (C4).

C1

Demolition is assumed to take 0.01 kWh/kg of element. It is assumed that 100% of waste is collected.

C2

Distance for transportation to treatment is assumed as 50 km and the transportation method is assumed to be lorry. This is an average distance

which considers the fact that the distance from the customer (construction site) to recycling and landfill facilities is not very long, as customers are assumed to be located in capital regions.

C3

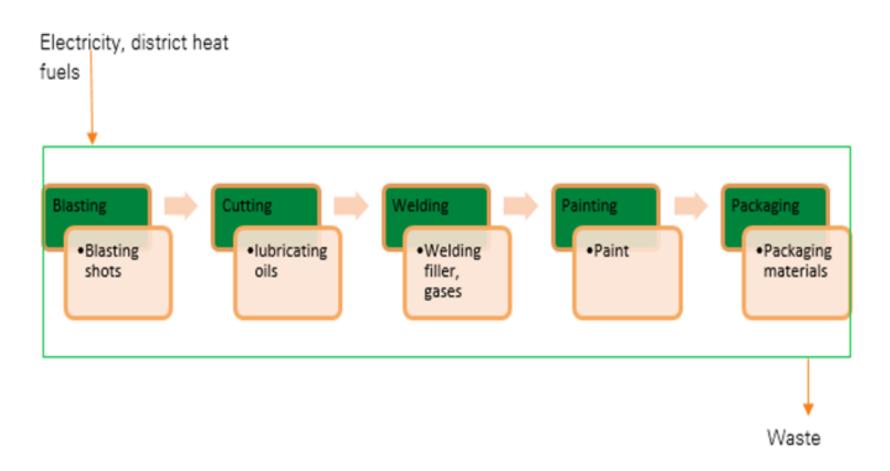
95% of steel is assumed to be recycled based on World Steel Association, 2020.

C4

It is assumed that 5% of steel is taken to landfill for final disposal.

D

Due to the recycling process the end-of-life product is converted into a recycled steel (D).



MANUFACTURING PROCESS

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, allocation has been done in the following ways:

Data type	Allocation
Raw materials	Partly allocated by mass/volume and partly by revenue
Packaging materials	Not applicable
Ancillary materials	Allocated by mass or volume
Manufacturing energy and waste	Allocated by mass or volume

AVERAGES AND VARIABILITY

Type of average	No averaging
Averaging method	Not applicable
Variation in GWP-fossil for A1-A3	0 %

This EPD is product and factory specific and does not contain average calculations.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. Ecoinvent and One Click LCA databases were used as sources of environmental data.

ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
GWP – total ¹⁾	kg CO₂e	1,45E+00	3,88E-02	1,12E-01	1,60E+00	9,07E-02	1,22E-02	MND	3,31E-03	4,69E-03	5,28E-02	1,64E-04	-5,70E-01						
GWP – fossil	kg CO₂e	1,45E+00	3,88E-02	1,17E-01	1,60E+00	9,07E-02	3,46E-05	MND	3,31E-03	4,69E-03	5,47E-02	2,63E-04	-5,70E-01						
GWP – biogenic	kg CO₂e	2,27E-03	0,00E+00	-5,13E-03	-2,86E-03	0,00E+00	1,21E-02	MND	0,00E+00	0,00E+00	-1,89E-03	-9,93E-05	0,00E+00						
GWP – LULUC	kg CO₂e	1,21E-03	1,46E-05	3,60E-04	1,59E-03	3,40E-05	7,84E-08	MND	3,30E-07	1,73E-06	5,44E-06	2,49E-07	5,23E-05						
Ozone depletion pot.	kg CFC-11e	7,84E-08	9,60E-09	5,03E-09	9,30E-08	2,26E-08	1,75E-12	MND	7,07E-10	1,08E-09	1,17E-08	1,07E-10	-2,09E-08						
Acidification potential	mol H⁺e	5,90E-03	1,24E-04	7,41E-04	6,77E-03	2,89E-04	1,85E-07	MND	3,44E-05	1,99E-05	5,68E-04	2,48E-06	-1,80E-03						
EP-freshwater ²⁾	kg Pe	6,98E-05	2,85E-07	1,55E-05	8,57E-05	6,48E-07	3,55E-09	MND	1,10E-08	3,84E-08	1,81E-07	2,76E-09	-2,37E-05						
EP-marine	kg Ne	1,24E-03	2,74E-05	8,40E-05	1,35E-03	6,38E-05	2,61E-08	MND	1,52E-05	5,90E-06	2,51E-04	8,57E-07	-4,29E-04						
EP-terrestrial	mol Ne	1,37E-02	3,04E-04	9,36E-04	1,49E-02	7,07E-04	2,95E-07	MND	1,67E-04	6,51E-05	2,76E-03	9,43E-06	-5,03E-03						
POCP ("smog") ³⁾	kg NMVOCe	6,22E-03	1,19E-04	2,76E-04	6,62E-03	2,78E-04	8,26E-08	MND	4,59E-05	2,08E-05	7,58E-04	2,74E-06	-3,16E-03						
ADP-minerals & metals ⁴⁾	kg Sbe	5,79E-06	9,50E-08	2,38E-07	6,12E-06	2,22E-07	9,53E-11	MND	1,68E-09	1,10E-08	2,77E-08	6,05E-10	-7,25E-08						
ADP-fossil resources	MJ	1,67E+01	6,19E-01	2,82E+00	2,01E+01	1,45E+00	7,19E-04	MND	4,45E-02	7,05E-02	7,36E-01	7,22E-03	- 4,51E+00						
Water use ⁵⁾	m³e depr.	8,48E-01	2,84E-03	9,95E-02	9,50E-01	6,68E-03	1,93E-05	MND	1,20E-04	3,15E-04	1,98E-03	2,29E-05	-8,70E-02						

¹⁾ GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS – EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Particulate matter	Incidence	1,16E-07	4,49E-09	1,78E-09	1,22E-07	1,05E-08	6,99E-13	MND	9,22E-10	5,41E-10	1,52E-08	4,99E-11	-3,11E-08						
Ionizing radiation ⁶⁾	kBq U235e	1,55E-01	3,15E-03	8,48E-02	2,43E-01	7,46E-03	1,91E-05	MND	2,05E-04	3,36E-04	3,38E-03	3,27E-05	4,03E-02						
Ecotoxicity (freshwater)	CTUe	3,76E+01	5,19E-01	1,31E+00	3,94E+01	1,20E+00	4,35E-04	MND	2,68E-02	6,34E-02	4,42E-01	4,71E-03	- 1,83E+01						
Human toxicity, cancer	CTUh	2,27E-08	1,34E-11	4,37E-11	2,28E-08	3,13E-11	2,13E-14	MND	1,03E-12	1,56E-12	1,69E-11	1,18E-13	7,90E-09						
Human tox. non-cancer	CTUh	3,50E-08	5,24E-10	1,30E-09	3,68E-08	1,23E-09	4,31E-13	MND	1,94E-11	6,27E-11	3,20E-10	3,08E-12	-1,13E-08						
SQP ⁷⁾	-	4,44E+00	7,19E-01	6,64E-01	5,82E+00	1,69E+00	1,11E-04	MND	5,79E-03	8,12E-02	9,56E-02	1,54E-02	-8,55E-01						

⁶⁾ EN 15804+A2 disclaimer for Ionizing radiation, human health. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

USE OF NATURAL RESOURCES

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	С3	C4	D
Renew. PER as energy ⁸⁾	MJ	1,34E+00	7,85E-03	2,20E-01	1,57E+00	1,88E-02	1,25E-04	MND	2,54E-04	7,94E-04	4,20E-03	6,27E-05	2,04E-01						
Renew. PER as material	MJ	0,00E+00	0,00E+00	4,49E-02	4,49E-02	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Total use of renew. PER	MJ	1,34E+00	7,85E-03	2,65E-01	1,62E+00	1,88E-02	1,25E-04	MND	2,54E-04	7,94E-04	4,20E-03	6,27E-05	2,04E-01						
Non-re. PER as energy	MJ	1,67E+01	6,19E-01	2,71E+00	2,00E+01	1,45E+00	7,18E-04	MND	4,45E-02	7,05E-02	7,36E-01	7,22E-03	- 4,51E+00						
Non-re. PER as material	MJ	0,00E+00	0,00E+00	1,15E-01	1,15E-01	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Total use of non-re. PER	MJ	1,67E+01	6,19E-01	2,82E+00	2,01E+01	1,45E+00	7,18E-04	MND	4,45E-02	7,05E-02	7,36E-01	7,22E-03	- 4,51E+00						
Secondary materials	kg	8,01E-01	1,74E-04	3,04E-04	8,01E-01	4,08E-04	2,71E-07	MND	1,74E-05	1,96E-05	2,88E-04	1,52E-06	4,32E-01						
Renew. secondary fuels	MJ	1,28E-04	1,57E-06	1,52E-03	1,65E-03	3,60E-06	4,35E-10	MND	5,70E-08	1,97E-07	9,41E-07	3,96E-08	2,02E-05						
Non-ren. secondary fuels	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Use of net fresh water	m³	1,95E-02	8,17E-05	3,59E-03	2,32E-02	1,92E-04	6,04E-07	MND	2,70E-06	9,13E-06	4,47E-05	7,90E-06	-1,83E-04						

⁸⁾ PER = Primary energy resources.

END OF LIFE – WASTE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Hazardous waste	kg	5,30E-01	6,85E-04	7,16E-03	5,38E-01	1,55E-03	2,95E-06	MND	5,96E-05	9,34E-05	9,84E-04	0,00E+00	3,13E-02						
Non-hazardous waste	kg	2,81E+00	1,18E-02	7,10E-01	3,53E+00	2,70E-02	1,61E-04	MND	4,19E-04	1,54E-03	6,92E-03	5,00E-02	-8,30E-01						
Radioactive waste	kg	5,56E-05	4,25E-06	2,07E-05	8,05E-05	9,99E-06	5,17E-09	MND	3,13E-07	4,71E-07	5,18E-06	0,00E+00	7,41E-06						

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
Components for re-use	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Materials for recycling	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	9,50E-01	0,00E+00	0,00E+00						
Materials for energy rec	kg	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	3,10E-03	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						
Exported energy	MJ	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00	MND	0,00E+00	0,00E+00	0,00E+00	0,00E+00	0,00E+00						

ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	C3	C4	D
Global Warming Pot.	kg CO₂e	1,39E +00	3,85E- 02	1,16E- 01	1,55E+00	8,98E -02	3,42E- 05	MND	3,27E-03	4,64E-03	5,41E-02	2,58E-04	-5,34E-01						
Ozone depletion Pot.	kg CFC-	7,49E- 08	7,60E- 09	4,32E- 09	8,69E-08	1,79E -08	1,51E- 12	MND	5,60E-10	8,55E-10	9,25E-09	8,43E-11	-2,60E-08						
Acidification	kg SO₂e	4,79E- 03	1,01E- 04	6,38E- 04	5,53E-03	2,34E -04	1,56E- 07	MND	2,45E-05	1,54E-05	4,05E-04	1,87E-06	-1,42E-03						
Eutrophication	kg PO₄³e	2,85E- 03	2,14E- 05	5,06E- 04	3,38E-03	4,97E -05	1,25E- 07	MND	5,69E-06	3,52E-06	9,39E-05	4,03E-07	-9,15E-04						
POCP ("smog")	kg C ₂ H ₄ e	5,93E- 04	4,68E- 06	2,56E- 05	6,23E-04	1,09E -05	6,75E- 09	MND	5,36E-07	6,03E-07	8,86E-06	7,84E-08	-3,89E-04						
ADP-elements	kg Sbe	5,62E- 06	9,24E- 08	2,40E- 07	5,95E-06	2,16E -07	9,48E- 11	MND	1,65E-09	1,07E-08	2,73E-08	5,96E-10	-7,82E-08						
ADP-fossil	MJ	1,67E +01	6,19E- 01	2,82E +00	2,01E+01	1,45E +00	7,18E- 04	MND	4,45E-02	7,05E-02	7,36E-01	7,22E-03	-4,51E+00						

ENVIRONMENTAL IMPACTS – TRACI 2.1. / ISO 21930

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4	D
Global Warming Pot.	kg CO₂e	1,40E+00	3,85E-02	1,15E-01	1,55E+00	8,98E-02	3,39E-05	MND	3,29E-03	4,65E-03	5,43E-02	2,58E-04	-5,42E-01						
Ozone Depletion	kg CFC-11e	7,47E-08	7,60E-09	4,29E-09	8,66E-08	1,79E-08	1,50E-12	MND	5,60E-10	8,55E-10	9,25E-09	8,43E-11	-2,60E-08						
Acidification	kg SO₂e	2,66E-01	5,63E-03	3,15E-02	3,03E-01	1,31E-02	8,02E-06	MND	1,78E-03	9,45E-04	2,94E-02	1,21E-04	-8,22E-02						
Eutrophication	kg Ne	2,92E-04	1,47E-05	1,28E-05	3,20E-04	3,45E-05	4,64E-09	MND	2,59E-06	1,98E-06	4,27E-05	2,26E-07	-6,99E-05						
POCP ("smog")	kg O₃e	3,27E-03	7,09E-05	2,13E-04	3,55E-03	1,65E-04	6,57E-08	MND	3,93E-05	1,53E-05	6,49E-04	2,22E-06	-1,28E-03						
ADP-fossil	MJ	9,56E-01	8,55E-02	7,65E-02	1,12E+00	2,01E-01	2,75E-05	MND	6,35E-03	9,64E-03	1,05E-01	1,01E-03	-1,54E-01						

VERIFICATION STATEMENT

VERIFICATION PROCESS FOR THIS EPD

This EPD has been verified in accordance with ISO 14025 by an independent, third-party verifier by reviewing results, documents and compliancy with reference standard, ISO 14025 and ISO 14040/14044, following the process and checklists of the program operator for:

- This Environmental Product Declaration
- The Life-Cycle Assessment used in this EPD
- The digital background data for this EPD

Why does verification transparency matter? Read more online This EPD has been generated by One Click LCA EPD generator, which has been verified and approved by the EPD Hub.

THIRD-PARTY VERIFICATION STATEMENT

I hereby confirm that, following detailed examination, I have not established any relevant deviations by the studied Environmental Product Declaration (EPD), its LCA and project report, in terms of the data collected and used in the LCA calculations, the way the LCA-based calculations have been carried out, the presentation of environmental data in the EPD, and other additional environmental information, as present with respect to the procedural and methodological requirements in ISO 14025:2010 and reference standard.

I confirm that the company-specific data has been examined as regards plausibility and consistency; the declaration owner is responsible for its factual integrity and legal compliance.

I confirm that I have sufficient knowledge and experience of construction products, this specific product category, the construction industry, relevant standards, and the geographical area of the EPD to carry out this verification.

I confirm my independence in my role as verifier; I have not been involved in the execution of the LCA or in the development of the declaration and have no conflicts of interest regarding this verification.

Elma Avdyli, as an authorized verifier acting for EPD Hub Limited 05.01.2024

VERIFIED ISO 14025

