TECHNICAL MANUAL

ADJUSTA Joint Reinforcement

Advanced Continuity Reinforcement System

Version PEIKKO GROUP 11/2019

ADJUSTA Joint Reinforcement

Advanced Continuity Reinforcement System

- Ensuring the continuity of reinforcement in connections between concrete components
- Simple formwork design and joint assembly
- Time-effective installation to formwork requires minimum labor for preparation and installation
- The pre-molded former board is customized to achieve all slab depths and concrete cover requirements
- Highly adaptable system with wide range of threaded bars from \emptyset 12 to \emptyset 32
- Former boards and connector plugs are made of durable HDPE and 100% recycled material and are reusable from floor to floor.

ADJUSTA Joint Reinforcement is a fast, simple and safe rebar-ferrule anchor connection system. The system provides continuity of reinforcement steel across concrete casting joint by overlapping threaded bars with the main reinforcement of the connected concrete element.

For easier installation, ferrule anchors secured by connector plugs against concrete infill are assembled to former board. The complete assembly of former board and ferrule anchors can be attached to a formwork or installed to a reinforcement of a concrete structure. It is not necessary to penetrate or further modify the formwork. Once the concrete has hardened, former boards and connector plugs are removed with special Peikko tools. Threaded bars are screwed into ferrule anchors and should overlap with the main reinforcement of the joined concrete element. The former board and connector plugs are made of recycled material and can be reused several times thanks to the durability of the material.

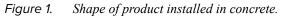
ADJUSTA Joint Reinforcement is available for different bar diameters (\emptyset 12, ϑ 16, ϑ 20, ϑ 25 and ϑ 32) of 500 MPa yield strength with different former board widths. The wide spectrum of dimensions makes this system highly adaptable.

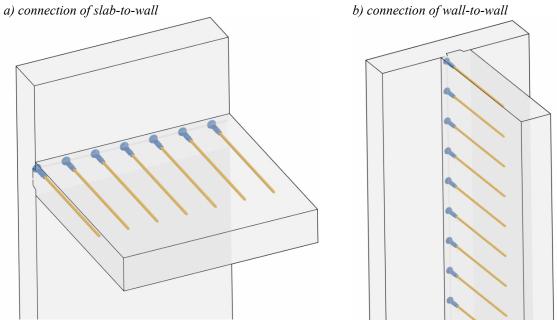
www.peikko.com

CONTENTS

Abo	out ADJUSTA Joint Reinforcement	5
1.	Product properties	5
	1.1 Structural behavior	6
	1.1.1 Temporary conditions	7
	1.1.2 Final conditions	7
	1.2 Limitations for application	7
	1.2.1 Loading and environmental conditions	8
	1.2.2 Positioning of ADJUSTA	8
	1.3 Other properties	8
2.	Resistances	10
	2.1 Tensile capacity of a single anchor	10
	2.2 Tensile capacity of a group of anchors in one row	11
	2.2.1 According to ACI 318-19, Section 17.6.2.1	11
	2.2.2 According to EN 1992-4:2018, Section 7.2.1.4	13
	2.3 Tensile capacity of a group of anchors in two rows	15
	2.3.1 According to ACI 318-19	16
	2.3.2 According to EN 1992-4:2018	16
	2.3.3 Reduction factors for the projected concrete failure area of group of anchors:	17
	2.4 Fire resistance	18
3.	Selecting ADJUSTA	19
	3.1 Example 1	20
	3.2 Example 2	22

CONTENTS

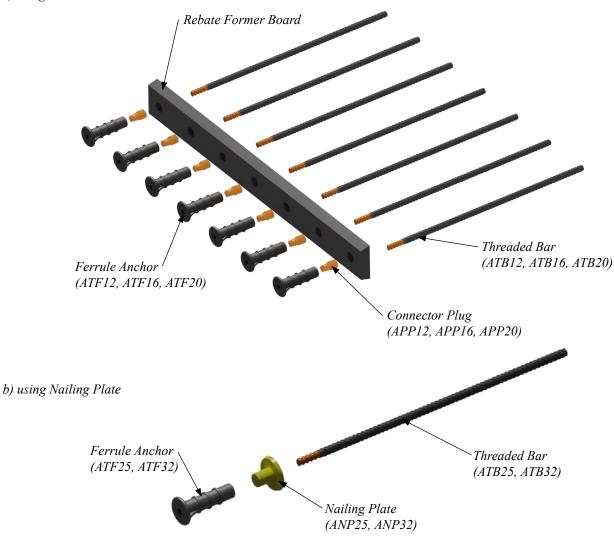

4.	Annex A – Recommended connection design and resistances	
	4.1 Transverse shear resistance	24
	4.2 Bending resistance	26
5.	Annex B - Accessories	28
INS	TALLING ADJUSTA Joint Reinforcement	29
	Installation using Rebate Former Board	29
	Installation using Nailing Plates	31


About ADJUSTA Joint Reinforcement

1. **Product properties**

ADJUSTA Joint Reinforcement is a connector system for reinforcement bars in concrete construction joints cast at different times. The system is designed for connecting interfacing monolithic concrete elements that have been split during the casting process:

- Slab-to-core connection
- Wall-to-wall connection
- Stair landing connection
- Penetration: Tower crane / concrete pump
- Precast element concrete connection

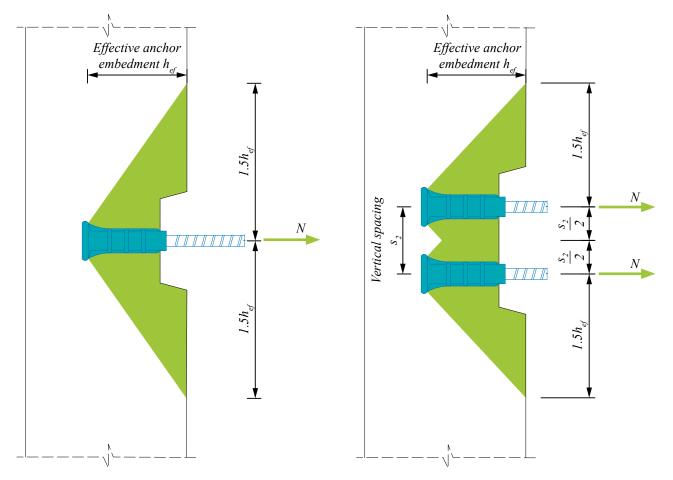


ADJUSTA Joint Reinforcement system consists of headed Ferrule Anchors and Threaded Bars in available diameters of 12, 16, 20, 25 and 32 mm. These components are combined with Rebate Former Board + Connector Plug or with Nailing Plate. Practical installation tools (see in Annex B - Accessories) are provided for assembling and disassembling.

Ferrule Anchors (ATF) for Threaded Bars (ATB) of diameters 12 mm, 16 mm and 20 mm are combined in the installation process with Rebate Former Board with thickness of 30 mm (see *Figure 2a*). Ferrule Anchors for Threaded Bar diameters 25 mm and 32 mm use Nailing Plates instead of Rebate Former Board in the installation process, (see *Figure 2b*). ADJUSTA Joint Reinforcement secures the transfer of shear loads in the joint by using a shear key. The shear key is created by the Rebate Former Board in the installation process with models ATF12, ATF16 and ATF20. In case of models ATF25 and ATF32, Nailing Plates do not create the shear key. If shear connection is needed for models ATF25 and ATF32, it is necessary to create the shear key case-by-case with minimum thickness adequate to Rebate Former Board in the installation process.

Figure 2. ADJUSTA Joint Reinforcement units.

a) using Rebate Former Board



1.1 Structural behavior

Threaded Bars anchored by Ferrule Anchors in concrete act as steel ties crossing the concrete joint and are loaded by tensile forces. The load-bearing capacity of the tie is limited either by the tensile strength of the rebar with nominal diameter of the rebar (thread on the rebar has bigger resistance than the rebar itself) or the anchorage capacity (concrete breakout failure). In case of closely spaced Ferrule Anchors (spacing smaller than three times embedment depth), it is necessary to consider the overlapping of adjacent concrete cones.

Figure 3. Acting the tensile force in Ferrule Anchors.

a) Full concrete cone breakout

1.1.1 Temporary conditions

The Rebate Former Board can be removed only after hardening the concrete element where it was installed. The Connector Plug or the Nailing Plate are to be removed directly before installing Threaded Bars. A Ferrule Anchor embedded in concrete without a Connector Plug and exposed to weather conditions for longer period can negatively influence the properties of the system.

1.1.2 Final conditions

The connection can be assumed as load-bearing after the Threaded Bars are properly tightened into Ferrule Anchors and both parts are embedded in adequately hardened concrete elements before applying any load to the structure.

1.2 Limitations for application

ADJUSTA Joint Reinforcement is designed to be used under the conditions stated in this chapter. If these conditions are not met, please contact Peikko Technical Support. ADJUSTA Joint Reinforcement is not determined for load applications that are predominantly high cycle fatigue or impact loads.

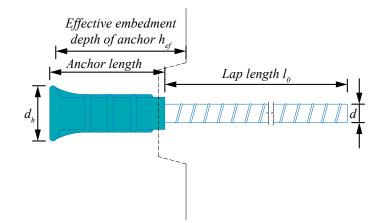
b) Modified concrete cone breakout

1.2.1 Loading and environmental conditions

ADJUSTA Joint Reinforcement is primarily designed to transfer static loads. Resistances of ADJUSTA Joint Reinforcement are determined in accordance with ACI 318-19, EN 1992-4:2018 and EN 1992-1-1:2004. ADJUSTA Joint Reinforcement is designed to be installed indoors and in dry conditions. When using in other conditions, the surface treatment, concrete cover, and raw materials must be suitable for the environmental exposure class and intended operating life.

1.2.2 Positioning of ADJUSTA

ADJUSTA Joint Reinforcement is designed to be used in reinforced concrete connections with concrete strength 25 MPa or higher. Using a lower strength of concrete is possible but the resistance of the connection needs to be recalculated according to valid standards. The precise position of ADJUSTA is indicated in the design drawings created by the designer of the project. ADJUSTA Joint Reinforcement must be fixed to the formwork or attached to the reinforcement mesh of the concrete element to secure the correct position during casting of concrete. The system can be fixed to formworks by nailing or secured with the wire to the reinforcement. The minimum concrete cover is secured during installation of ADJUSTA Joint Reinforcement. The examples of connection and its behavior are shown in *Annex A - Recommended connection design and resistances*.


1.3 Other properties

Rebate Former Board	High density polyethylene
Ferrule Anchor	Graphite cast iron with tensile strength of 600 MPa
Threaded Bar	Reinforcing steel with characteristic yield strength of f_{y} = 500 MPa (500N)

Threaded Bar from reinforcing bar 500N, compliant to the AS/NZS 4671.2001 standard, has been determined with independent NATA Lab mechanical testing in accordance with AS1391:2020. All bars have an epoxy painted color cursor that guarantees full embedment depth of Threaded Bar and easy on-site inspection.

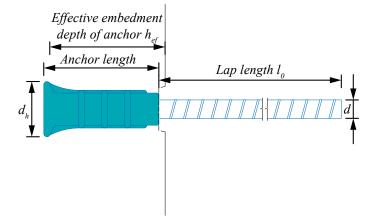

Connector Plug Recycled polyurethane

 Table 1.
 Dimensions of Ferrule Anchor and Threaded Bar using Rebate Former Board.

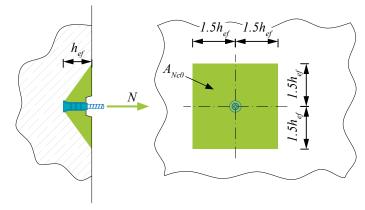
Ferrule Anchor	Threaded Bar	Diameter of head of anchor d_h [mm]	Anchor length [mm]	Effective embedment depth of anchor h_{ef} [mm]	Standard lap length of Threaded Bar I_{θ} [mm]
ATF12	ATB12	45	94	111	500
ATF16	ATB16	60	125	141	600
ATF20	ATB20	60	125	141	800

Table 2. Dimensions of Ferrule Anchor and Threaded Bar using Nailing Plate.

Ferrule Anchor	Threaded Bar	Diameter of head of anchor d_h [mm]	Anchor length [mm]	Effective embedment depth of anchor h_{ef} [mm]	Standard lap length of Threaded Bar I_{θ} [mm]
ATF25	ATB25	75	156	155	950
ATF32	ATB32	96	200	196	1400

Peikko Group's production units are externally controlled and periodically audited on the basis of production certifications and product approvals by various independent organizations.

The products bear the inspection mark, the emblem of Peikko Group, the type of product, and the year and week of manufacturing.


2. Resistances

The resistances of Ferrule Anchor are defined according to spacing between adjacent anchors in the connection. All calculation methods are determined in accordance with the following standards:

- AS 3600- 2009
- ACI 318-19
- EN 1992-4: 2018
- EN 1992-1-1: 2004

2.1 Tensile capacity of a single anchor

Figure 4. The full projected area A_{Nc0} of a single anchor not influenced by adjacent anchors or by close edges.

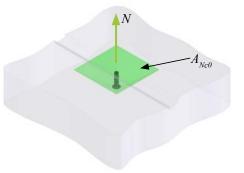
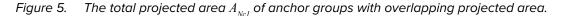
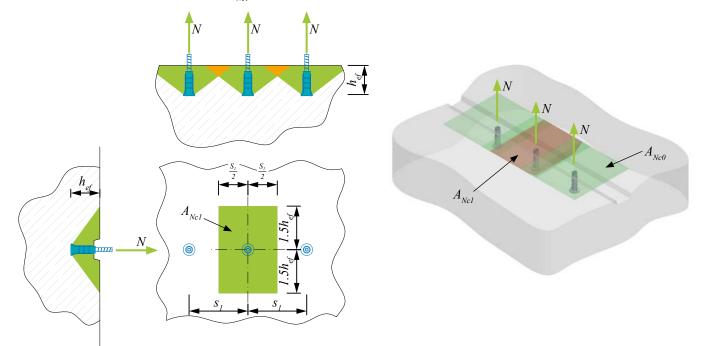


Table 3. Nominal concrete breakout strength of a single anchor not influenced by adjacent anchors or close edges.

Ferrule	Threaded	Design	Effective anchor	Nominal concrete breakout strength per anchor $N_{cb\theta}$ (ACI) $~N^{\theta}_{Rk,c}$ (EN) [kN/ anchor]						
Anchor	Bar	standard	embedment <i>h_{ef}</i> [mm]	Concrete strength 25 MPa	Concrete strength 30 MPa	Concrete strength 32 MPa	Concrete strength 40 MPa	Concrete strength 50 MPa	Concrete strength 65 MPa	
ATF12	ATB12	ACI 318-19	111	73.09	80.07	82.69	92.45	103.37	117.86	
AIFIZ	AIDIZ	EN 1992-4	111	74.26	81.35	84.02	93.93	105.02	119.74	
ATE40	47040	ACI 318-19	141	104.64	114.63	118.39	132.36	147.99	168.73	
ATF16	ATB16	EN 1992-4		106.32	116.46	120.28	134.48	150.35	171.43	
47520	47000	ACI 318-19	4.44	104.64	114.63	118.39	132.36	147.99	168.73	
ATF20	ATB20	EN 1992-4	141	106.32	116.46	120.28	134.48	150.35	171.43	
ATEOE	ATDOF	ACI 318-19	455	120.61	132.12	136.45	152.56	170.57	194.48	
ATF25	ATB25	EN 1992-4	155	122.54	134.23	138.64	155.00	173.30	197.59	
47500	47022	ACI 318-19	100	171.50	187.87	194.03	216.93	242.54	276.54	
ATF32	ATB32	EN 1992-4	196	174.24	190.87	197.13	220.40	246.42	280.96	

NOTE:


Please note that all resistances are determined with the assumption that the minimum distance from concrete edges is $1.5h_{\rm ef}$


Boundary conditions for determining characteristic values in Table 3

The characteristic concrete breakout strength in tension of a single anchor not influenced by any adjacent anchors or close edges of the concrete member are calculated in accordance with ACI 318-19, Section 17.6.2.2 and EN 1992-4: 2018, Section 7.2.14. The modification factors which influence the nominal concrete breakout strength are determined based on the expectation of cast-in anchors located in a region of a reinforced concrete member where analysis has indicated no cracking at service load levels.

2.2 Tensile capacity of a group of anchors in one row

The projected area (A_{Ncl}) of concrete breakout failure is influenced by adjacent anchors which affect the projected area of a single anchor (A_{Ncl}) . Axial distance s_1 is less than $3h_{ef}$. Spacing in a row is standardized to 150 mm, 200 mm, 250 mm and 300 mm. The nominal concrete breakout strength per anchor is reduced by ratio of the areas A_{Ncl}/A_{Ncd} .

2.2.1 According to ACI 318-19, Section 17.6.2.1

Design tensile load in one anchor
$$\leq \min \left\{ \begin{cases} \phi \cdot N_{cb} \\ \phi \cdot A_s \cdot f_y \end{cases} \right\}$$
 (1)

Where:

ф

= Strength reduction factor for design values [-]

$$N_{cb} = \frac{A_{NcI}}{A_{Nc0}} N_{cb0} [kN]$$
(2)

Where:

 N_{cb0}

The nominal concrete breakout strength in tension of a single anchor [kN]

NOTE:

=

Table 4 shows the nominal steel strength of an anchor in tension and the nominal concrete breakout strength per anchor. For allowable design loads, reduction factor ϕ needs to be applied in accordance with 318-19, Section 17.5.3.

INFORMATION

				_	of		Nominal o	oncrete bro	eakout strei	ngth per an	chor $N_{_{ch}}$ [kl	N/ anchor]
Ferrule Anchor	Threaded Bar	Anchor spacing <i>s</i> , [mm]	Effective anchor embedment $h_{\sigma'}$ [mm]	Nominal steel strength of anchor in tension $A_s \cdot f_p$ [kN]	Minimum ultimate strength of the bar A_{s} \mathcal{F}_{a} [kN]	Reduction factor of the projected area $\frac{A_{\rm ext}}{A_{\rm exo}}$ [-]	Concrete strength 25 MPa	Concrete strength 30 MPa	Concrete strength 32 MPa	Concrete strength 40 MPa	Concrete strength 50 MPa	Concrete strength 65 MPa
		300				0.90	65.85	72.13	74.50	83.29	93.12	106.18
ATF12	ATB12	250	111	56.55	61.07	0.75	54.87	60.11	62.08	69.41	77.60	88.48
AIFIZ	AIDIZ	200		50.55	61.07	0.60	43.90	48.09	49.67	55.53	62.08	70.78
		150				0.45	32.92	36.07	37.25	41.65	46.56	53.09
		300		100.53		0.71	74.21	81.30	83.96	93.87	104.96	119.67
ATF16	ATB16	250	141		108.57	0.59	61.85	67.75	69.97	78.23	87.46	99.72
AIFIO	AIDIO	200	141	100.55	100.57	0.47	49.48	54.20	55.98	62.58	69.97	79.78
		150				0.35	37.11	40.65	41.98	46.94	52.48	59.83
		300				0.71	74.21	81.30	83.96	93.87	104.96	119.67
ATF20	ATB20	250	141	157.08	169.65	0.59	61.85	67.75	69.97	78.23	87.46	99.72
AII 20	AID20	200		137.00	105.05	0.47	49.48	54.20	55.98	62.58	69.97	79.78
		150				0.35	37.11	40.65	41.98	46.94	52.48	59.83
		300				0.65	77.81	85.24	88.03	98.43	110.04	125.47
ATF25	ATB25	250	155	245.44	265.07	0.54	64.84	71.03	73.36	82.02	91.70	104.56
		200				0.43	51.87	56.83	58.69	65.62	73.36	83.65
		300				0.51	87.50	95.85	98.99	110.68	123.74	141.09
ATF32	ATB32	250	196	402.12	434.29	0.43	72.92	79.88	82.50	92.23	103.12	117.57
		200				0.34	58.33	63.90	66.00	73.79	82.50	94.06

Table 4.Nominal tensile capacity for a group of anchors in one row according to ACI 318-19.

NOTE:

Please note that the values of the nominal concrete breakout strength in *Table 4* are already reduced by reduction factor of the projected area $A_{_{Ncl}}/A_{_{_{Ncl}}}$.

2.2.2 According to EN 1992-4:2018, Section 7.2.1.4

The design resistance of an anchor influenced by other anchors in one row is the minimum value of concrete breakout strength reduced by ratio of influenced and uninfluenced projected areas A_{Ncl}/A_{Nc0} and the maximum tensile steel failure of anchor.

$$N_{Rd} = min \cdot \begin{cases} N_{Rd,c} \\ N_{Rd,s} \end{cases}$$
(3)

$$N_{Rd,c} = \frac{N_{Rk,c}}{\gamma_{Mc}} [kN]$$
(4)

Where:

 γ_{Mc}

=

Partial factor for concrete breakout failure according to EN 1992-4:2018, *Table 4*.1 [-] 1.5

$$N_{Rk,c} = N_{Rk,c}^{0} \frac{A_{NcI}}{A_{Nc0}} \psi_{s,N} \psi_{re,N} \psi_{ec,N} \psi_{M,N} [kN]$$
(5)

 $N_{Rk,c}^{\theta}$ = The characteristic resistance of a single fastener placed in concrete and not influenced by adjacent fasteners or edges of the concrete member [kN] (*Table 2*)

The modification factors $\psi_{s,N} \psi_{re,N} \psi_{ec,N} \psi_{M,N}$ consider the distribution of stresses in the concrete to the proximity of edges of concrete member, eccentricity load or a different tension load acting according to EN 1992-4:2018, Section 7.2.1.4.

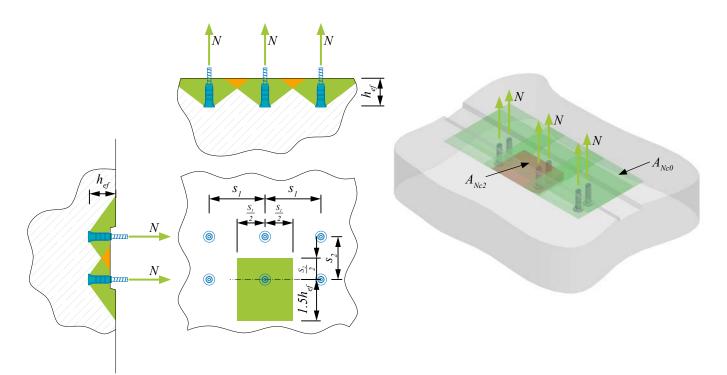
$$N_{Rd,s} = \frac{f_{uk} \cdot A_s}{\gamma_{Ms}} [kN]$$
(6)

Where:

- f_{uk} = The nominal characteristic steel ultimate tensile strength [N/mm2] A_s = Cross sectional area of anchor [mm2] Darticl for the function of a characteristic steel for the SN 1002 4:2010 Tetric 14
- γ_{Ms} = Partial factor for steel failure according to EN 1992-4:2018, Table 4.1 [-]

						Design tage	ile eeneeiteene	wanahaw M	[LN] / amahaw]	
			Ē	5 6	_		ile capacity pe			_
Ferrule Anchor	Threaded Bar	Anchor spacing <i>s</i> , [mm]	Effective anchor embedment $oldsymbol{h}_{of}[{ m mm}]$	Reduction factor of the projected area $rac{A_{ m Not}}{A_{ m Not}}$ [-]	Concrete strength C25/30	Concrete strength C30/37	Concrete strength C32/40	Concrete strength C40/50	Concrete strength C50/60	Concrete strength C65/80
		300		0.90	43.62	43.62	43.62	43.62	43.62	43.62
47540	47040	250	111	0.75	37.17	40.71	42.05	43.62	43.62	43.62
ATF12	ATB12	200	111	0.60	29.73	32.57	33.64	37.61	42.05	43.62
		150		0.45	22.30	24.43	25.23	28.21	31.54	35.96
		300	300 250 200 150	0.71	50.27	55.07	56.87	63.58	71.09	77.55
ATE16	ATD16	250		0.59	41.89	45.89	47.39	52.99	59.24	67.55
ATF16	ATB16	200		0.47	33.51	36.71	37.91	42.39	47.39	54.04
		150		0.35	25.13	27.53	28.44	31.79	35.54	40.53
		300		0.71	50.27	55.07	56.87	63.58	71.09	81.05
47520	ATB20	250	141	0.59	41.89	45.89	47.39	52.99	59.24	67.55
ATF20	AIDZU	200	141	0.47	33.51	36.71	37.91	42.39	47.39	54.04
		150		0.35	25.13	27.53	28.44	31.79	35.54	40.53
		300		0.65	52.70	57.73	59.63	66.67	74.54	84.98
ATF25	ATB25	250	155	0.54	43.92	48.11	49.69	55.56	62.11	70.82
		200		0.43	35.14	38.49	39.75	44.44	49.69	56.66
		300		0.51	59.27	64.92	67.05	74.97	83.82	95.56
ATF32	ATB32	250	196	0.43	49.39	54.10	55.88	62.47	69.85	79.64
		200		0.34	39.51	43.28	44.70	49.98	55.88	63.71

Table 5. Design tensile capacity for group of anchors in one row according to EN 1992-4: 2018.



NOTE:

Please note that Table 5 already presents the design values of tensile capacity.

2.3 Tensile capacity of a group of anchors in two rows

The projected area $(A_{_{Nc2}})$ of the concrete breakout failure of anchors in two rows is determined by the projected area of a single anchor $(A_{_{Nc0}})$ affected by adjacent anchors. The spacing between anchors (s_i) or between rows (s_2) is less than $3h_{_{ef}}$. The spacing in a row (s_i) is standardized to 150 mm, 200 mm, 250 mm and 300 mm. Spacing s_2 is standardized to 75 mm but can be customized. The ultimate tensile strength is reduced by ratio of the areas $A_{_{Nc2}}$ and $A_{_{Nc0}}$. The reduction factors of the projected areas $A_{_{Nc2}}/A_{_{Nc0}}$ are presented in the graphs in Section 2.3.3 (Graph 1 - Graph 4).

INFORMATION

2.3.1 According to ACI 318-19

The values of nominal concrete breakout strength of anchor N_{cb0} in *Table 6* need to be reduced by reduction factor of the projected area A_{Nc2}/A_{Nc0} taken from the graphs (see Graph 1 - Graph 4 acc. model) based on spacing between anchors.

Table 6.Nominal tensile capacity of a single anchor not influenced by adjacent anchors or close edges
according to ACI 318-19.

		Ē	gth	Nominal concrete breakout strength per anchor $N_{_{cb\theta}}[{\rm kN}/$					or $N_{_{cb\theta}}$ [kN/ ar	nchor]
Ferrule Anchor	Threaded Bar	Effective anchor embedment $oldsymbol{h}_{ef}[$ mm $]$	Nominal steel strength of anchor in tension $A_s f_y$ [kN]	Minimum ultimate strength of the bar $A_s J_a [kN]$	Concrete strength 25 MPa	Concrete strength 30 MPa	Concrete strength 32 MPa	Concrete strength 40 MPa	Concrete strength 50 MPa	Concrete strength 65 MPa
ATF12	ATB12	111	56.55	61.07	73.09	80.07	82.69	92.45	103.37	117.86
ATF16	ATB16	141	100.53	108.57	104.64	114.63	118.39	132.36	147.99	168.73
ATF20	ATB20	141	157.08	169.65	104.64	114.63	118.39	132.36	147.99	168.73
ATF25	ATB25	155	245.44	265.07	120.61	132.12	136.45	152.56	170.57	194.48
ATF32	ATB32	196	402.12	434.29	171.50	187.87	194.03	216.93	242.54	276.54

NOTE:

Table 6 shows the nominal steel strength of anchor and the nominal concrete breakout strength per anchor. For Ultimate Limit State design, reduction factor ϕ needs to be applied in accordance with ACI 318-19, Section 17.5.3.

N

NOTE: The nominal tensile capacity of the anchor is also limited by steel strength of the anchor in tension according to ACI 318-19:

inimum of
$$\begin{cases} \frac{A_{Nc2}}{A_{nc0}} \cdot N_{cb0} \\ A_s \cdot f_y \end{cases}$$

(7)

For the values of N_{cb0} and $A_s \cdot f_v$ please see *Table* 6.

т

2.3.2 According to EN 1992-4:2018

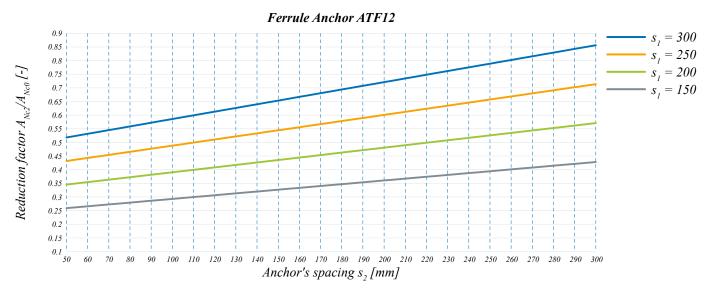
The values of design tensile strength of anchor $N_{_{Rd,c}}$ in Table 7 need to be reduced by reduction factor $A_{_{Nc2}}/A_{_{Nc0}}$ taken from the graphs (see Graph 4 acc. model) based on spacing between anchors.

Table 7. Design tensile capacity of a single anchor not influenced by adjacent anchors or close edges.

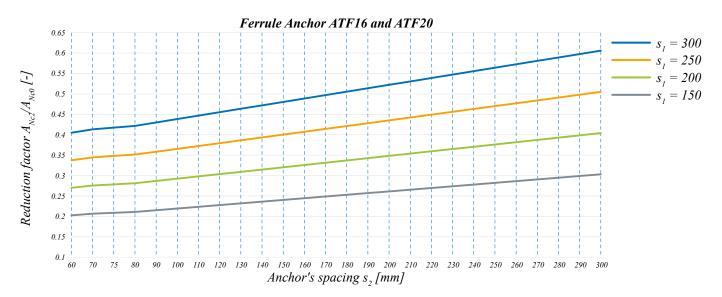
		Ē	steel r in	Design tensile capacity in case of concrete cone failure per anchor $N_{Rd,c}$ [kN/ and						
Ferrule Anchor	Threaded Bar	Effective anchor embedment $oldsymbol{h}_{e^{f}}[mm]$	Maximum design st strength of anchor i tension $N_{\rm Rd,s}$ [kN]	Concrete strength C25/30	Concrete strength C30/37	Concrete strength C32/40	Concrete strength C40/50	Concrete strength C50/60	Concrete strength C65/80	
ATF12	ATB12	111	43.62	49.51	54.23	56.01	62.62	70.01	79.83	
ATF16	ATB16	141	77.55	70.88	77.64	80.19	89.65	100.24	114.29	
ATF20	ATB20	141	121.18	70.88	77.64	80.19	89.65	100.24	114.29	
ATF25	ATB25	155	189.34	81.69	89.49	92.42	103.33	115.53	131.72	
ATF32	ATB32	196	310.21	116.16	127.25	131.42	146.94	164.28	187.31	

NOTE:

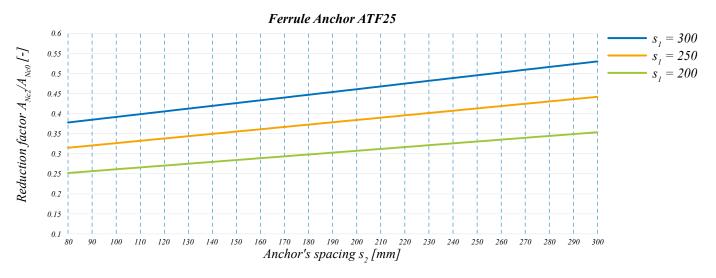
It is necessary to verify also steel strength failure of the anchor casted in concrete according to EN 1992-4: 2018, Section 7.2.1.3:

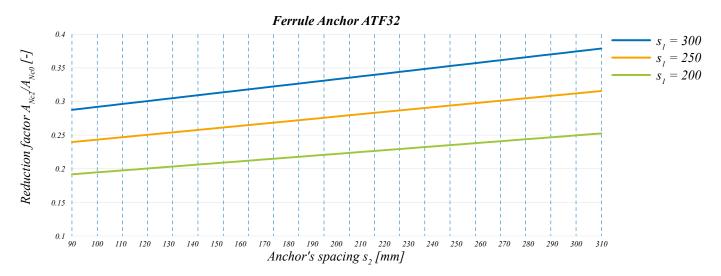

$$minimum of \begin{cases} \frac{A_{Nc2}}{A_{nc0}} \cdot N_{Rd,c} \\ N_{Rd,s} \end{cases}$$
(8)

For the values of $N_{\rm Rd,c}$ and $N_{\rm Rd,s}$ please see Table 7.


2.3.3 Reduction factors for the projected concrete failure area of group of anchors:

Reduction factor of the projected area $A_{_{NC2}}/A_{_{Nc0}}$ designates how the concrete cone of concrete breakout failure of one anchor is affected by other adjacent anchors. It is determined by spacing s_1 and s_2 between adjacent anchors. The graphs are determined for different ADJUSTA models.


Graph 1. Reduction factor A_{Nc2}/A_{Nc0} for Ferrule Anchor ATF 12.


Graph 2. Reduction factor A_{Nc2}/A_{Nc0} for Ferrule Anchor ATF 16 and ATF 20.

Graph 3. Reduction factor A_{Nc2}/A_{Nc0} for Ferrule Anchor ATF 25.

Graph 4. Reduction factor A_{Nc2}/A_{Nc0} for Ferrule Anchor ATF 32.

The projected areas of concrete breakout failure are possible to calculate if the effective embedment of anchor and spacing between them is known. The projected concrete failure area of a single anchor with an edge distance equal to or greater than $1.5h_{ef}$ is calculated as follows:

$$A_{Nc0} = 9h_{ef}^2 [kN] \tag{9}$$

The projected concrete failure area of a single anchor that is approximated as the base of the rectilinear geometrical figure that results from projecting the failure surface outward $1.5h_{ef}$ from the centerlines of the anchor, or in the case of a group of anchors, from a line through a row of adjacent anchors can be determined as follows:

$$A_{Nc2} = s_{I} \cdot \left(I.5h_{ef} + \frac{s_{2}}{2} \right) [kN]$$
 (10)

2.4 Fire resistance

The concrete cover of Threaded Bars must be at least equivalent to the concrete cover of the reinforcement of the concrete element. If the fire resistance of the connection is judged to be insufficient, the concrete cover of Threaded Bars must be increased.

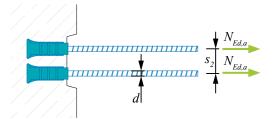
3. Selecting ADJUSTA

A summary of ADJUSTA Joint Reinforcement parts specified in order is presented in the following table.

Rebate Former Board		Dimensions		
	1200 mm	Width:110 (single row), 165 (single and double row), Width can be customizedSpacing s_j :150, 200, 250, 300 mm (standardized)Spacing s_2 is standardized to 75 mm (can be customized)Position of holes: a) Central – C b) Top and Bottom – T+BLength × Width – spacing s_j + position of holes Example: Rebate Former Board 1200 ×165–200T+B		
Ferrule Anchor	Model	Threaded Bar	Model	
	ATF12		ATB12	
	ATF16		ATB16	
	ATF20		ATB20	
	ATF25		ATB25	
	ATF32		ATB32	
Connector Plug	Model	Nailing Plate	Model	
	APP12	0	ANP25	
	APP16		ANP32	
	APP20			

Please fill in Table 8 with your specified parts. Consider the pieces of reusable parts. An example for selecting is shown in Sections 3.1 and 3.2.

Table 8. ADJUSTA Order Form.


Model/Dimension	Quantity [pcs]	Description

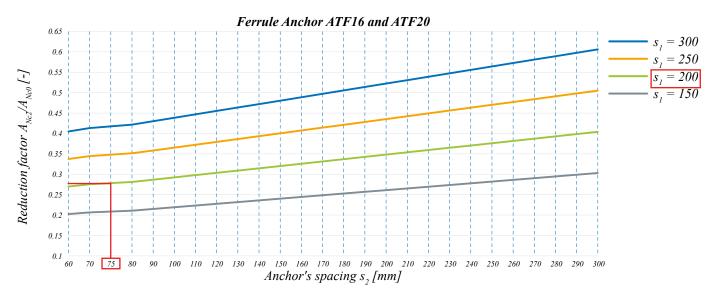
Examples of the procedure used for the design and selection of ADJUSTA in the connection of slab-to-wall in accordance with ACI 318-19.

3.1 Example 1

Input data:

Concrete strength Height of slab Bar diameter Spacing between anchors in one row Spacing between rows of anchors Number of anchors in a meter Tension load in the connection of slab-to-wall 32 MPa *h* = 230 mm *d* = 16 mm $s_1 = 200 \text{ mm}$ *s*, = 75 mm n = 10 pcs $N_{Ed,a}$ = 22.8 kN/anchor

Designed tensile capacity of an anchor influenced by other anchors:


$$\phi N_{cb} = \phi \cdot \frac{A_{\scriptscriptstyle Nc2}}{A_{\scriptscriptstyle Nc0}} \cdot N_{\scriptscriptstyle cb0}$$

 $N_{cb0} = 118.9 \text{ kN/anchor} \Rightarrow$ Ultimate tensile strength per anchor not influenced by other anchors or edges according to Table 3.

o	_	anchor ent	eel anchor 4 _s f _s [kN]	ultimate of the bar	Nominal concrete breakout strength per anchor $N_{cb\theta}$ [kN/anchor]					
Ferrule Anchor	Threaded Bar	Effective and embedment $h_{e\!f}[{ m mm}]$	Nominal steel strength of an in tension $A_{\rm s}$	Minimum ult strength of t $A_s \cdot f_u kN$]	Concrete strength 25 MPa	Concrete strength 30 MPa	Concrete strength 32 MPa	Concrete strength 40 MPa	Concrete strength 50 MPa	Concrete strength 65 MPa
ATF12	ATB12	111	56.55	61.07	73.09	80.07	82.69	92.45	103.37	117.86
ATF16	ATB16	141	100.53	108.57	104.64	114.63	118.39	132.36	147.99	168.73
ATF20	ATB20	141	157.08	169.65	104.64	114.63	118.39	132.36	147.99	168.73
ATF25	ATB25	155	245.44	265.07	120.61	132.12	136.45	152.56	170.57	194.48
ATF32	ATB32	196	402.12	434.29	171.50	187.87	194.03	216.93	242.54	276.54

Reduction factor of the projected area from Graph 2 (ATF16 and ATF20) influenced by anchors $A_{_{Nc2}}/A_{_{_{Nc0}}}$ according to spacing s_1 and s_2 :

$$\frac{A_{Nc2}}{A_{Nc0}} = 0.27$$

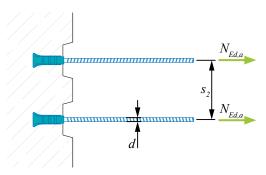
The design value of the tensile capacity of anchor based on the used reduction factor ϕ for anchors in concrete.

- $\Rightarrow \quad \text{Tensile resistance of anchor based on the yield strength of steel} \qquad \phi = 0.75 \\ \phi A_s \cdot f_y = 0.75 \cdot 100.53 = 75.4 \text{ kN/anchor} \\ \end{cases}$
- $\Rightarrow \text{ Tensile resistance of cast-in headed studs governed by concrete breakout} \qquad \phi = 0.75 \\ \phi N_{cb} = \phi \cdot \frac{A_{Nc2}}{A_{Nc0}} \cdot N_{cb0} = 0.75 \cdot 0.27 \cdot 118.39 = 23.97 \text{ kN/anchor} \\ N_{Ed,a} \le \min \cdot \begin{cases} \phi \cdot A_s \cdot f_y = 75.4 \text{ kN/anchor} \\ \phi \cdot N_{cb} = 23.97 \text{ kN/anchor} \\ N_{Ed,a} \le \phi N_{cb} \end{cases}$

22.80 kN/anchor < 23.97 kN/anchor

Order Form

Model/Dimension	Quantity [pcs]	Description
ATF16	120	
ATB16	120	
APP16	40	
Rebate Former Board 1200x165-200T+B	20	
Board Release Key	3	
Plug Release Key	3	

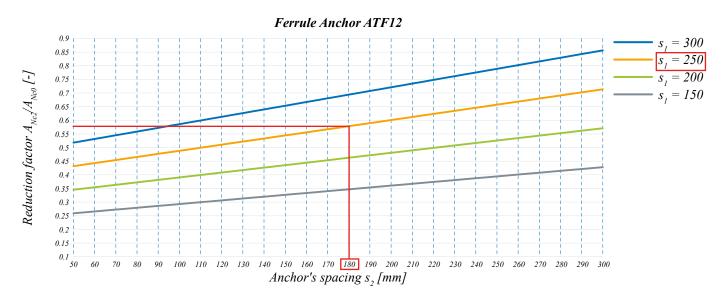

SELECTING

3.2 Example 2

Input data:

Concrete strength Bar diameter Spacing between anchors in one row Spacing between rows of anchors Number of anchors in a meter Tension load in the connection of slab-to-wall

Designed tensile capacity of an anchor influenced by other anchors:


$$\phi N_{cb} = \phi \cdot \frac{A_{Nc2}}{A_{Nc0}} \cdot N_{cb0}$$

 $N_{cb0} = 117.86 \text{ kN/anchor} \Rightarrow$ Ultimate tensile strength per anchor not influenced by other anchors or edges according to Table 3.

o	-	anchor ent	eel anchor <i>4_s f_y</i> [kN]	ultimate of the bar	Nominal concrete breakout strength per anchor N_{cb0} [kN/anchor]						
Ferrule Anchor	Threaded Bar	Effective anc embedment $h_{\phi}[{ m mm}]$	Nominal steel strength of an in tension $A_{\rm s}$	Minimum ulti strength of th $A_s \cdot f_u kN$]	Concrete strength 25 MPa	Concrete strength 30 MPa	Concrete strength 32 MPa	Concrete strength 40 MPa	Concrete strength 50 MPa	Concrete strength 65 MPa	
ATF12	ATB12	111	56.55	61.07	73.09	80.07	82.69	92.45	103.37	117.86	
ATF16	ATB16	141	100.53	108.57	104.64	114.63	118.39	132.36	147.99	168.73	
ATF20	ATB20	141	157.08	169.65	104.64	114.63	118.39	132.36	147.99	168.73	
ATF25	ATB25	155	245.44	265.07	120.61	132.12	136.45	152.56	170.57	194.48	
ATF32	ATB32	196	402.12	434.29	171.50	187.87	194.03	216.93	242.54	276.54	

Reduction factor of the projected area from Graph 1 (ATF12) influenced by anchors A_{Nc2}/A_{Nc0} according to spacing s_1 and s_2 :

$$\frac{A_{Nc2}}{A_{Nc0}} = 0.58$$

The design value of the tensile capacity of anchor based on the used reduction factor ϕ for anchors in concrete.

- $\Rightarrow Tensile resistance of anchor based on the yield strength of steel$ $<math>\phi A_s \cdot f_y = 0.75 \cdot 56.55 = 42.41 \ kN/anchor$ $\phi = 0.75$
- \Rightarrow Tensile resistance of cast-in headed studs governed by concrete breakout $\phi = 0.75$

$$\begin{split} \phi N_{cb} &= \phi \cdot \frac{A_{Nc2}}{A_{Nc0}} \cdot N_{cb0} = 0.75 \cdot 0.58 \cdot 117.86 = 51.27 \text{ kN/anchor} \\ N_{Ed,a} &\leq \min \cdot \begin{cases} \phi \cdot A_s \cdot f_y = 42.41 \text{ kN/anchor} \\ \phi \cdot N_{cb} = 51.27 \text{ kN/anchor} \\ N_{Ed,a} \leq \phi A_s \cdot f_y \end{split}$$

39.3 kN/anchor < *42.41 kN/anchor*

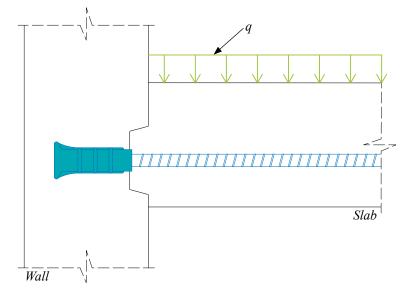
Order Form

Model/Dimension	Quantity [pcs]	Description
ATF12	230	
ATB12	230	
APP12	85	
Rebate Former Board 1200x110-250C	50	
Board Release Key	5	
Plug Release Key	5	

4. Annex A – Recommended connection design and resistances

Annex A describes the recommended general design methods for the assessment of the shear and bending resistance of ADJUSTA Joint Reinforcement. The recommended design procedure must be validated case by case by the designer of the project. The resistances presented in this Annex depend on the layout and dimensions of connected concrete elements. A general design procedure is available for transverse shear resistance and bending resistance.

4.1 Transverse shear resistance


The design procedure of the shear resistance of connection needs to be applied in two steps:

- 1. Estimate the resistance of concrete console formed by Rebate Former Board
- 2. Assess the shear capacity of the slab

Step 1.

As a Threaded Bar is intended to transfer primarily tensile loads, it is recommended to secure the transfer of shear loads in the joint using shear keys. With models ATF12, ATF16 and ATF20, the shear key is created by using Rebate Former Board in the installation. With models ATF25 and ATF32, it is necessary to create the shear key by using adequate inserts in the formwork of the concrete member.

Figure 6. Acting external load on the connection of slab-to-wall.

It is assumed that within the joint, the transverse shear load is bearing on the concrete console (see *Figure 7*). The concrete console resistances are pre-calculated in *Table 9* assuming a thickness of 30 mm corresponding to the standard Rebate Former Board.

Figure 7. Shear capacity of the concrete console.

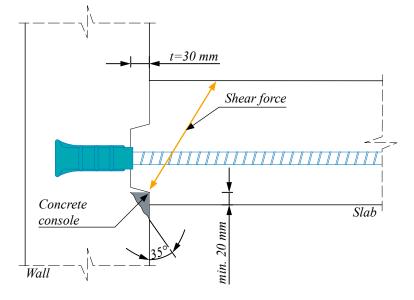


Table 9. The recommended design values of transverse shear resistance based on concrete console resistance.

			Design shear capacity of the console $V_{{\scriptscriptstyle Rd,I}}[{ m kN/m}]$					
Ferrule Anchor	Threaded Bar	Console width t [mm]	Concrete strength 25 MPa	Concrete strength 30 MPa	Concrete strength 32 MPa	Concrete strength 40 MPa	Concrete strength 50 MPa	Concrete strength 65 MPa
ATF12	ATB12	30	38.56	42.84	45.34	53.56	62.12	67.28
ATF16	ATB16	30	38.56	42.84	45.34	53.56	62.12	67.28
ATF20	ATB20	30	38.56	42.84	45.34	53.56	62.12	67.28

Step 2.

Design slab element based on strut-and-tie model or other appropriate design model. The shear resistance of a slab element can be increased with stirrups or double-headed studs.

An indented arrangement of the joint (see *Figure 8*) develops a strut-and-tie model in the connection, where compression is transferred by "concrete strut" and tension is transferred by "anchored threaded bar".

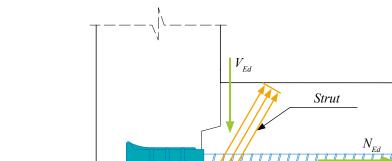
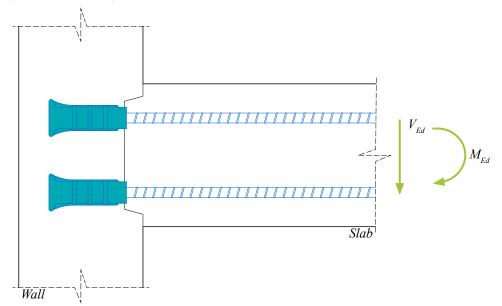


Figure 8. Strut-and-tie model for shear load transfer.

Wall

4.2 Bending resistance

If ADJUSTA Joint Reinforcement is placed at the same level and spliced with the bending reinforcement of the slab, the connection can transfer also bending moment. The general calculation procedure of bending moment is shown in *Figure 10*. The tensile loads carried by Threaded Bar should be limited by the anchorage capacity of Ferrule Anchor determined in Section 2. of this manual. The detailing of splicing (length of the bar and needed transverse reinforcement) must be verified case by case by the designer of the project.


20 mm

min.

Tie

Slab

Figure 9. Acting external bending moment and transverse shear force on the connection of slab-to-wall.

 F_{sl} F_{sl} F

Figure 10. General structural behavior of transferring the bending moment.

 $M = F_{s_1} \cdot z_{s_1} + F_{s_2} \cdot z_{s_2} + F_c \cdot z_c$ (11)

Where:

Which		
F_{sl}	=	Tensile strength in Threaded Bar [kN]
Z_{sl}	=	Distance from Neutral Axis to the middle of tension bar [mm]
\tilde{F}_{s}	=	Compressive strength in Threaded Bar [kN]
Z_{s2}	=	Distance from Neutral Axis to the middle of compressed bar [mm]
Ĕ,	=	Arm of compressive strength of the concrete [kN]
c		

 z_c = Distance from Neutral Axis to the middle of compressed concrete section [mm]

NOTE:

Please note that along with bending moment, the connection also involves transverse shear force which needs to be considered and evaluated based on an appropriate model as described in 4.1 (see *Figure 8*) of Annex A.

5. Annex B - Accessories

When using concrete elements, it is important to ensure that the rebar system is placed and fixed appropriately in the correct position. Peikko accessories can ensure that ADJUSTA Joint Reinforcement is correctly fixed to the formwork.

The accessories mentioned below are optional and must be ordered in addition to Ferrule Anchors and Threaded Bars.

Rebate Former Board

The HDPE Rebate Former Board is customized to the engineer's specified spacing and starter bar layout. It holds Ferrule Anchors in correct position and creates transverse shear resistance corbel. Rebate Former Board made of recycled material is resistant to petrochemicals and heat ensuring its durability and longevity. Rebate Former Board can be reused several times from floor to floor. The length of each board is standardized to 1.2 m but can be adapted at the installer's requests. Each board has three board release half nuts installed to assist with stripping the rebate former after pour. Rebate Former Board is used for the ATF12, ATF16 and ATF20 models with standard longitudinal spacing s_1 between Ferrule Anchors 150, 200, 250, 300 mm.

Connector Plug (APP12, APP16, APP20)

A plug and O-ring sealer is used in the ATF12, ATF16 and ATF20 models. It is manufactured from recycled materials and is durable and reusable from floor to floor. The O-ring provides a pipe seal around the mouth of the Ferrule Anchor during concrete pour and inhibits any grout/slurry intrusion. It is removed directly before fitting the Threaded Bar.

Nailing Plate (ANP25, ANP32)

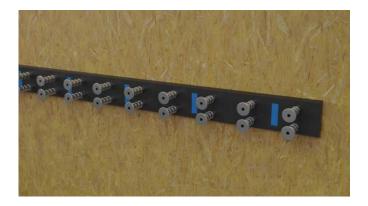
Nailing Plates are used mostly with models ATF25 and ATF32. They replace the role of Former Board and should fix ADJUSTA system to the mold in the correct position on the construction site.

Board Release Key

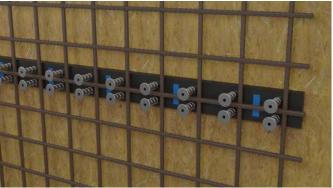
After Ferrule Anchors are concreted and the concrete has reached the required strength, the Rebate Former Board can be removed. A special Board Release Key is needed for this action.

Plug Release Key

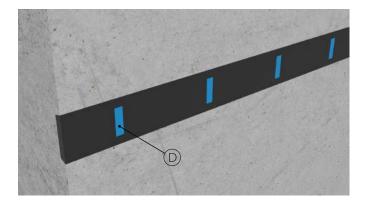
A special tool used for removing protective Connector Plug assembled in Ferrule Anchor before Threaded Bar is installed.

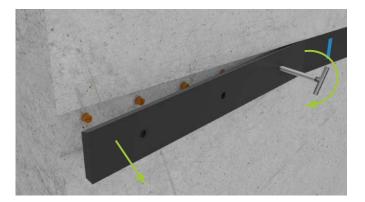

INSTALLING ADJUSTA Joint Reinforcement

Installation using Rebate Former Board

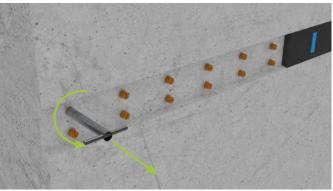

1. Assemble Ferrule Anchors A with Connector Plugs B into the prepared holes within Rebate Former Board C.

2. After fitting Ferrule Anchors in the right position on the Rebate Former Board, fix ADJUSTA system (Rebate Former Board with Ferrule Anchors) in the required position according to design by attaching it with nails onto the wooden formwork or connecting it to the existing reinforcement of the concrete element with wires.

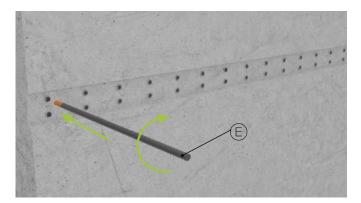

3. Install the main reinforcement of the concrete element.

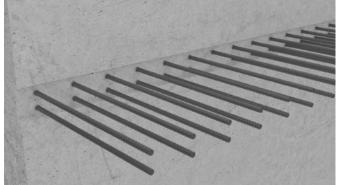

4. Pour concrete into the formwork with the main reinforcement of the concrete element.

5. When the formwork is removed, the Rebate Former Board is revealed. The holes for removing Rebate Former Boards are protected from concrete by tapes (D), which need to be peeled off before removing the Rebate Former Board.



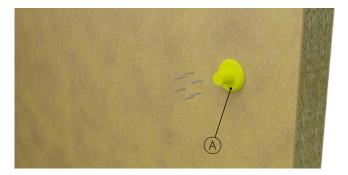
7. After removing the Rebate Former Board, the Connector Plugs are visible. Screw them off using the Plug Release Key (see Annex B - Accessories). Connector Plugs can be removed just before assembling Threaded Bars.

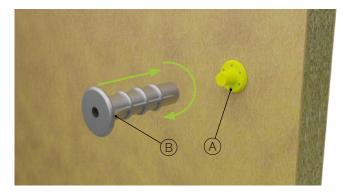

6. Remove the Rebate Former Board by using the Board


Release Key (see Annex B - Accessories).

8. Easy fitting of Threaded Bars (E) to Ferrule Anchors by screwing in. Threaded Bars are fully tigthened when the colored part of Threaded Bar is completely hidden in the Ferrule Anchor.

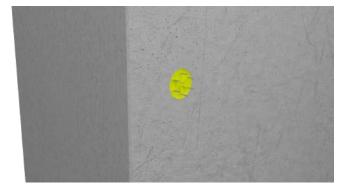
9. Once the bars are assembled in Ferrule Anchors, they are ready for overlapping with the other element reinforcement and pouring the concrete.



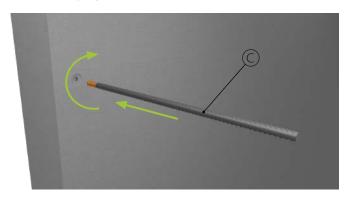

30 ADJUSTA JOINT REINFORCEMENT

Installation using Nailing Plates

1. Nailing Plate A must be attached to the formwork in the right position with nails.



2. Ferrule Anchor B is screwed onto Nailing Plate A.



3. When the Ferrule Anchor is fixed with the Nailing Plate to the formwork, it can be filled with concrete. After removing the formwork, the Nailing Plate is visible.

4. After the Nailing Plate is removed, the Threaded Bar \bigcirc is ready for assembling to the Ferrule Anchor. Threaded Bars are fully tigthened when the colored part of the Threaded Bar is completely hidden in the Ferrule Anchor.

NOTES

•••••

NOTES

NOTES

•••••

Technical Manual Revisions

Version: PEIKKO GROUP 11/2019. Revision: 001

• First publication

Resources

DESIGN TOOLS

Use our powerful software every day to make your work faster, easier, and more reliable. Peikko design tools include design software, 3D components for modeling programs, installation instructions, technical manuals, and product approvals of Peikko's products.

peikko.com/design-tools

TECHNICAL SUPPORT

Our technical support teams around the world are available to assist you with all of your questions regarding design, installation etc.

peikko.com/technical-support

APPROVALS

Approvals, certificates, and documents related to CE-marking (DoP, DoC) can be found on our websites under each products' product page.

peikko.com/products

EPDS AND MANAGEMENT SYSTEM CERTIFICATES

Environmental Product Declarations and management system certificates can be found at the quality section of our websites.

peikko.com/qehs

COMPANY WITH MANAGEMENT SYSTEM CERTIFIED BY DNV ISO 9001 - ISO 14001

ISO 45001